Regulation of Deactivation by an Amino Terminal Domain in Human Ether-à-go-go –related Gene Potassium Channels

نویسندگان

  • Jinling Wang
  • Matthew C. Trudeau
  • Angelina M. Zappia
  • Gail A. Robertson
چکیده

Abnormalities in repolarization of the cardiac ventricular action potential can lead to life-threatening arrhythmias associated with long QT syndrome. The repolarization process depends upon the gating properties of potassium channels encoded by the human ether-à-go-go-related gene (HERG), especially those governing the rate of recovery from inactivation and the rate of deactivation. Previous studies have demonstrated that deletion of the NH2 terminus increases the deactivation rate, but the mechanism by which the NH2 terminus regulates deactivation in wild-type channels has not been elucidated. We tested the hypothesis that the HERG NH2 terminus slows deactivation by a mechanism similar to N-type inactivation in Shaker channels, where it binds to the internal mouth of the pore and prevents channel closure. We found that the regulation of deactivation by the HERG NH2 terminus bears similarity to Shaker N-type inactivation in three respects: (a) deletion of the NH2 terminus slows C-type inactivation; (b) the action of the NH2 terminus is sensitive to elevated concentrations of external K+, as if its binding along the permeation pathway is disrupted by K+ influx; and (c) N-ethylmaleimide, covalently linked to an aphenotypic cysteine introduced within the S4-S5 linker, mimics the N deletion phenotype, as if the binding of the NH2 terminus to its receptor site were hindered. In contrast to N-type inactivation in Shaker, however, there was no indication that the NH2 terminus blocks the HERG pore. In addition, we discovered that separate domains within the NH2 terminus mediate the slowing of deactivation and the promotion of C-type inactivation. These results suggest that the NH2 terminus stabilizes the open state and, by a separate mechanism, promotes C-type inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-à-go-go potassium channel.

The specific assembly of subunits to oligomers is an important prerequisite for producing functional potassium channels. We have studied the assembly of voltage-gated rat ether-à-go-go (r-eag) potassium channels with two complementary assays. In protein overlay binding experiments it was shown that a 41-amino-acid domain, close to the r-eag subunit carboxy-terminus, is important for r-eag subun...

متن کامل

C-Linker Accounts for Differential Sensitivity of ERG1 and ERG2 K+ Channels to RPR260243-Induced Slow Deactivation.

Compounds can activate human ether-à-go-go-related gene 1 (hERG1) channels by several different mechanisms, including a slowing of deactivation, an increase in single channel open probability, or a reduction in C-type inactivation. The first hERG1 activator to be discovered, RPR260243 ((3R,4R)-4-[3-(6-methoxyquinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-car...

متن کامل

Molecular Determinants of Interactions between the N-Terminal Domain and the Transmembrane Core That Modulate hERG K+ Channel Gating

A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG) potassium channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also those lacking exclusively the eag domain or ca...

متن کامل

hERG1a N-terminal eag domain–containing polypeptides regulate homomeric hERG1b and heteromeric hERG1a/hERG1b channels: A possible mechanism for long QT syndrome

Human ether-á-go-go-related gene (hERG) potassium channels are critical for cardiac action potential repolarization. Cardiac hERG channels comprise two primary isoforms: hERG1a, which has a regulatory N-terminal Per-Arnt-Sim (PAS) domain, and hERG1b, which does not. Isolated, PAS-containing hERG1a N-terminal regions (NTRs) directly regulate NTR-deleted hERG1a channels; however, it is unclear wh...

متن کامل

Dynamic Control of Deactivation Gating by a Soluble Amino-Terminal Domain in HERG K 1 Channels

K 1 channels encoded by the human ether-à-go-go-related gene (HERG) are distinguished from most other voltage-gated K 1 channels by an unusually slow deactivation process that enables cardiac I Kr , the corresponding current in ventricular cells, to contribute to the repolarization of the action potential. When the first 16 amino acids are deleted from the amino terminus of HERG, the deactivati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 112  شماره 

صفحات  -

تاریخ انتشار 1998